Unusual electronic properties of clean and disordered zigzag graphene nanoribbons.

نویسندگان

  • J M Luck
  • Y Avishai
چکیده

We revisit the problem of electron transport in clean and disordered zigzag graphene nanoribbons, and expose numerous hitherto unknown peculiar properties of these systems at zero energy, where both sublattices decouple because of chiral symmetry. For clean ribbons, we give a quantitative description of the unusual power-law dispersion of the central energy bands and of its main consequences, including the strong divergence of the density of states near zero energy, and the vanishing of the transverse localization length of the corresponding edge states. In the presence of off-diagonal disorder, which respects the lattice chiral symmetry, all zero-energy localization properties are found to be anomalous. Recasting the problem in terms of coupled Brownian motions enables us to derive numerous asymptotic results by analytical means. In particular the typical conductance gN of a disordered sample of width N and length L is shown to decay as exp(-CNw√L), for arbitrary values of the disorder strength w, while the relative variance of ln gN approaches a non-trivial constant KN. The dependence of the constants CN and KN on the ribbon width N is predicted. From the mere viewpoint of the transfer-matrix formalism, zigzag ribbons provide a case study with many unusual features. The transfer matrix describing propagation through one unit cell of a clean ribbon is not diagonalizable at zero energy. In the disordered case, we encounter non-trivial random matrix products such that all Lyapunov exponents vanish identically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic properties of hydrogenated porous Graphene based nanoribbons: A density functional theory study

The structural and electronic properties of the hydrogenated porous graphene nanoribbons were studied by using density functional theory calculations. The results show that the hydrogenated porous graphene nanoribbons are energetically stable. The effects of ribbon type and ribbon width on the electronic properties of these nanoribbons were investigated. It was found that both armchair and zigz...

متن کامل

Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes

We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...

متن کامل

Enhanced Thermoelectric Figure of Merit in Edge Disordered Zigzag Graphene Nanoribbons

We investigate electron and phonon transport through edge disordered zigzag graphene nanoribbons based on the same methodological tool of nonequilibrium Green functions. We show that edge disorder dramatically reduces phonon thermal transport while being only weakly detrimental to electronic conduction. The behavior of the electronic and phononic elastic mean free paths points to the possibilit...

متن کامل

Electronic transport properties of graphene nanoribbons

We will present brief overview on the electronic and transport properties of graphene nanoribbons focusing on the effect of edge shapes and impurity scattering. The low-energy electronic states of graphene have two non-equivalent massless Dirac spectrum. The relative distance between these two Dirac points in the momentum space and edge states due to the existence of the zigzag type graphene ed...

متن کامل

Spin-valve effect in zigzag graphene nanoribbons by defect engineering

We report on the possibility for a spin-valve effect driven by edge defect engineering of zigzag graphene nanoribbons. Based on a mean-field spin-unrestricted Hubbard model, electronic band structures and conductance profiles are derived, using a self-consistent scheme to include gate-induced charge density. The use of an external gate is found to trigger a semiconductor-metal transition in cle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 27 2  شماره 

صفحات  -

تاریخ انتشار 2015